
Design Patterns

Software Development Patterns
(1)

Patterns: a means for capturing knowledge about
problems and successful solutions
Framework: partially completed software system
targeted at a particular type of application

Reusable mini-architecture
Class extension and operation implementation

Patterns versus frameworks
Patterns are more abstract and general
Patterns cannot be directly implemented in a particular
software environment
Patterns are more primitive

Software Development Patterns
(2)

Collection of patterns: pattern catalogue, pattern
language (specific domain, completeness), pattern
system (classification scheme and relationships)
Key principles underlying patterns

Abstraction, encapsulation, information hiding,
modularisation, separation of concerns, coupling and
cohesion, sufficiency-completeness and primitiveness,
separation of policy and implementation, separation of
interface and implementation, single point of reference,
divide and conquer

Patterns and non-functional requirements
Changeability, interoperability, efficiency, reliability,
testability and reusability

Software Development Patterns
(3)

Different kinds of patterns
Analysis patterns: groups of concepts useful in modelling
requirements

Example: Accountability
Architectural patterns: describe the structure and
relationships of major components of a software system

Example: Model-View-Controller
Design patterns: describe the structure and interaction of
smaller software components

Example: Singleton
Idioms: patterns that are related to constructs in a specific
programming language

Example: Counted pointer in C++

Software Development Patterns
(4)

Software Development Patterns
(5)

The propagation mechanism

«access» «access»

View A

Controller A Controller B

View B

Model

«access»

«access»

«access»

«access»

«propagate»«propagate»

Software Development Patterns
(6)

Software Development Patterns
(7)

More patterns
Beyond good practice – Anti-patterns: practice that is
demonstrably bad including possibly reworked solutions

Example: Mushroom Management
Isolate developers from users to limit requirement drift
Solutions: spiral process development model or involvement of
domain experts in the development team

Beyond software development
Architecture – Alexander
Organisational patterns
Pedagogical patterns

Pattern Templates

Style and structure of pattern description
Name – meaningful
Problem – intent
Context – preconditions
Forces – constraints
Solution – static and dynamic relationships among the
components
Other aspects: an example of use, resulting context,
rationale of the chosen solution, related patterns, known
uses of the pattern (rule of three), aliases, sample code
and implementation details

Design Patterns (1)

Gang of Four catalogue classification
Scope: class (compile time, static) or object level
(runtime, dynamic)
Purpose: creational, structural, behavioural
Ease of changes by reducing coupling and maximising
cohesion

Maintainability – correcting errors
Extensibility – inclusion of new features, removal of unwanted
features
Restructuring – increase flexibility
Portability – executing in different environments (OS, hardware,
etc.)

Design Patterns (2)

Creational patterns (construction of instances)
Separate object construction from object use

Dynamic or static

Singleton pattern
Ensures only one instance of a class is created!

Instead of global data, encapsulate the data into an object!
Use static operation getInstance()
Private constructor
Creation on demand!

Extension to accommodate variations

Design Patterns (3)

Design Patterns (4)

Design Patterns (5)

Advantages
Controlled access to the sole instance
No global variables
The Singleton class may be subclassed
A variation can create a specified number of instances

Disadvantages
Pattern introduces additional message passing
Limits the application flexibility
Developers are tempted to use even when inappropriate

Design Patterns (6)

Structural patterns (organisation of classes and
objects)

Inheritance, aggregation, composition

Composite pattern
Represent whole-part hierarchies so that both whole and
part objects offer the same interface to client objects
Same interface suggests same inheritance hierarchy –
polymorphic definition of operations

Design Patterns (7)

Design Patterns (8)

Design Patterns (9)

Behavioural patterns (problems of assigning
responsibilities to class and designing algorithms)

Inheritance structures to spread behaviour
Aggregation structures to build complex behaviour

State pattern
Objects exhibit different behaviour when their internal
stage changes appearing as if the change class at run-time
Complex behaviour is broken down into simpler
operation which are allocated to different objects one for
each state, and the original object delegates responsibility
to the appropriate state object
State transition responsibility either on context or shared

Design Patterns (10)

Advert Preparation

Running Adverts SchedulingconfirmSchedule()

extendCampaign()
/modify Budget()

advertsApproved()
/authorize()

Active

Survey

Evaluation

surveyComplete()

runSurvey()

Running

Monitoring

campaignCompleted()
/prepareFinalStatement()

Design Patterns (11)

Design Patterns (12)

Design Patterns (13)

Design Patterns (14)

Advantages
State behaviour is localised
State transitions are made explicit
State object can be shared among Context objects

Disadvantages
If state objects cannot be share among Context objects there is an
explosion of objects
Processing overheads for the creation and deletion of state
objects
Processing overhead from the additional message

How to use design patterns

Patterns require training
Issues to consider

Is there a pattern for the
problem?
Does the pattern trigger a
more acceptable solution?
Is there a simpler solution?
Is the context of the pattern
consistent with that of the
problem?
Are the consequences of
using the pattern acceptable?
Are any constraints of the
software environment in
conflict with the use of the
pattern?

Pattern application procedure
Read the pattern to get a complete
overview
Study the Structure, Participants
and Collaborations in detail
Examine the Sample Code
Choose names for the participants
that are meaningful for the
application
Define the classes
Implement operations that perform
the responsibilities and
collaboration in the pattern

Pattern mining (pattern writer’s
workshop)

Benefits and Dangers of using
patterns

Reuse of generic solutions
Reusable design elements

A vocabulary for discussing the problem domain
Patterns can limit creativity
Patterns may lead to over-design
Introduction of patterns has cost for the
organisation
Introduction of patterns requires a reuse culture

More acceptable than code reuse
Use with care and planning

